Nel mondo dei frattali

6,49

Categoria:
   

Quarta di Copertina

Utilizzati nella finanza come nella geometria, nella dinamica complessa, nella progettazione delle reti informatiche e nella rappresentazione grafica delle galassie, i frattali sono oggetti geometrici dotati di omotetia interna: la loro forma si ripete sempre uguale su tutte le possibili scale di riproduzione e ogni singola parte della figura, se ingrandita, ripropone forma e struttura dell’intero. Sono affascinanti immagini della complessità e compaiono come sistema di riferimento nella teoria del caos; si “esprimono” in forma di algoritmi. Dalla loro scoperta, avvenuta ad opera di Mandelbrot nel 1975, hanno rapidamente preso possesso della ricerca scientifica, riuscendo a fornire sul piano matematico una spiegazione di tutto ciò che ha un comportamento caotico. In natura, sono molti gli oggetti frattali: gli alberi, le nuvole, il profilo delle montagne, la linea geomorfologica delle coste marine, i cristalli, le foglie e i fiori. “È possibile che in qualche modo i frattali trovino un riscontro nella mente umana, e per questa ragione le persone li riconoscono come immagini familiari”. In questo libro Benoit Mandelbrot ci racconta il percorso scientifico che, dalla semplice capacità di rappresentare le forme e dallo studio delle stesse in natura, lo ha condotto allo sviluppo dei frattali e alla loro applicazione pratica in vari campi del sapere.
Benoit Mandelbrot (1924-2010) è stato Sterling professor di Scienze matematiche all’Università di Yale. Nel 1958 entrò a far parte del Centro di ricerca Thomas J. Watson dell’IBM, lavorandovi dal 1974 al 1993 come IBM Fellow in Fisica. Membro dell’Accademia Nazionale delle Scienze americana e di altre importanti istituzioni sparse in tutto il mondo, ha ricevuto numerosi riconoscimenti, tra i quali nel 1993 il Wolf Prize per la Fisica. Fra i libri da lui pubblicati ricordiamo: “The Fractals Geometry of Nature” (New York, 1982); “Gli oggetti frattali: forma, caso e dimensione” (Torino, 1987); “Fractals and Scaling in Finance” (New York, 1997); “Multifractals and 1/f Noise: Wild Self-Affinity in Physics” (New York, 2000); “Gaussian Self-Affinity and Fractals” (New York, 2000).

Dettagli prodotto

  • Formato: Formato Kindle
  • Dimensioni file: 5607 KB
  • Editore: Di Renzo Editore; 3 edizione (15 gennaio 2018)
  • Venduto da: Amazon Media EU S.à r.l.
  • Lingua: Italiano
  • ASIN: B07JGPT3DS